A natural introduction to probability theory

Second
A natural introduction to probability theory
Meester· Ronald.
Locate

My Reading Lists:

Create a new list


Buy this book

Last edited by meot
April 8, 2025 | History

A natural introduction to probability theory

Second

This edition doesn't have a description yet. Can you add one?

Publish Date
Publisher
Birkhauser
Language
English

Buy this book

Edition Availability
Cover of: A natural introduction to probability theory
A natural introduction to probability theory
2008, Birkhauser
softcover, pdf in English - Second
Cover of: A natural introduction to probability theory
Cover of: A natural introduction to probability theory
A natural introduction to probability theory
2003, Birkhauser·
in English - First edition

Add another edition?

Book Details


Table of Contents

.
Contents
Preface to the First Edition viii
Preface to the Second Edition x
1 Experiments 1
1.1 Definitions and Examples . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Counting and Combinatorics . . . . . . . . . . . . . . . . . . . . . 6
1.3 Properties of Probability Measures . . . . . . . . . . . . . . . . . . 10
1.4 Conditional Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 A First Law of Large Numbers . . . . . . . . . . . . . . . . . . . . 26
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Random Variables and Random Vectors 35
2.1 Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Expectation and Variance . . . . . . . . . . . . . . . . . . . . . . . 43
2.4 Random Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Conditional Distributions and Expectations . . . . . . . . . . . . . 57
2.6 Generating Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 62
2.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3 Random Walk 71
3.1 Random Walk and Counting . . . . . . . . . . . . . . . . . . . . . 71
3.2 The Arc-Sine Law . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4 Limit Theorems 81
4.1 The Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . 81
4.2 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
vi Contents
I Intermezzo 89
I.1 Uncountable Sample Spaces . . . . . . . . . . . . . . . . . . . . . . 89
I.2 An Event Without a Probability?! . . . . . . . . . . . . . . . . . . 90
I.3 Random Variables on Uncountable Sample Spaces . . . . . . . . . 92
5 Continuous Random Variables and Vectors 93
5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2 Properties of Probability Measures . . . . . . . . . . . . . . . . . . 98
5.3 Continuous Random Variables . . . . . . . . . . . . . . . . . . . . . 100
5.4 Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.5 Random Vectors and Independence . . . . . . . . . . . . . . . . . . 109
5.6 Functions of Random Variables and Vectors . . . . . . . . . . . . . 113
5.7 Sums of Random Variables . . . . . . . . . . . . . . . . . . . . . . 117
5.8 More About the Expectation; Variance . . . . . . . . . . . . . . . . 118
5.9 Random Variables Which are Neither Discrete Nor Continuous . . 122
5.10 Conditional Distributions and Expectations . . . . . . . . . . . . . 124
5.11 The Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . 131
5.12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6 Infinitely Many Repetitions 137
6.1 Infinitely Many Coin Flips and Random Points in (0, 1] . . . . . . 138
6.2 A More General Approach to Infinitely Many Repetitions . . . . . 140
6.3 The Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . 142
6.4 Random Walk Revisited . . . . . . . . . . . . . . . . . . . . . . . . 146
6.5 Branching Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7 The Poisson Process 153
7.1 Building a Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
7.3 The Waiting Time Paradox . . . . . . . . . . . . . . . . . . . . . . 162
7.4 The Strong Law of Large Numbers . . . . . . . . . . . . . . . . . . 164
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8 Limit Theorems 167
8.1 Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2 Characteristic Functions . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3 Expansion of the Characteristic Function . . . . . . . . . . . . . . 173
8.4 The Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . 176
8.5 The Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . 179
8.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
9 Extending the Probabilities 183
9.1 General Probability Measures . . . . . . . . . . . . . . . . . . . . . 183
Contents vii
A Interpreting Probabilities 187
B Further Reading 191
C Answers to Selected Exercises 193
Index 195
.

Edition Notes

Published in
Basel CH
Copyright Date
2008

The Physical Object

Format
softcover, pdf

Edition Identifiers

Open Library
OL58367282M

Work Identifiers

Work ID
OL13628053W

Links outside Open Library

Community Reviews (0)

No community reviews have been submitted for this work.

Lists

History

Download catalog record: RDF / JSON / OPDS | Wikipedia citation
April 8, 2025 Edited by meot added the online edition (softcover, pdf)
April 8, 2025 Created by meot Added new book.