Resonance-energy-transfer-based fluorescence imaging and free energy perturbation calculation

Resonance-energy-transfer-based fluorescence ...
Fang Xu, Fang Xu
Locate

My Reading Lists:

Create a new list

Check-In

×Close
Add an optional check-in date. Check-in dates are used to track yearly reading goals.
Today


Buy this book

Last edited by MARC Bot
December 17, 2022 | History

Resonance-energy-transfer-based fluorescence imaging and free energy perturbation calculation

This thesis focuses on an important aspect of protein functionality – protein-protein interactions (PPI). Three physical chemistry techniques for or derived from protein-protein interaction investigation are discussed. First, in Chapter 2, we demonstrate a new fluorescent imaging technique that creates high-order nonlinear signals by harnessing the frustrated fluorescence resonance energy transfer (FRET) – energy transfer between certain proteins close in proximity which is commonly used in PPI studies. In Chapter 3, we combine fluorescence resonance energy transfer (FRET) and bioluminescence resonance energy transfer (BRET), two most commonly used approaches to monitor protein-protein interactions in vivo, to create a novel hybrid strategy, bioluminescence assisted switching and fluorescence imaging (BASFI), which integrates the advantages of FRET and BRET. We demonstrate BASFI with Dronpa-RLuc8 fusion constructs and drug-inducible intermolecular FKBP-FRB protein-protein interactions in live cells with high sensitivity, resolution, and specificity.

Finally, in Chapter 4, we propose a systematic free energy perturbation (FEP) protocol to computationally calculate the binding affinities between proteins. We demonstrate our protocol with the gp120 envelope glycoprotein of HIV-1 and three broadly neutralizing antibodies (bNAbs) of the VRC01 class and analyze antibody residues’ contributions to the binding which further provides insights for antibody design.

Publish Date
Language
English

Buy this book

Book Details


Edition Notes

Department: Chemistry.

Thesis advisor: Richard A. Friesner.

Thesis (Ph.D.)--Columbia University, 2018.

Published in
[New York, N.Y.?]

The Physical Object

Pagination
1 online resource.

Edition Identifiers

Open Library
OL44201795M
OCLC/WorldCat
1023046166

Work Identifiers

Work ID
OL32426185W

Source records

marc_columbia MARC record

Community Reviews (0)

No community reviews have been submitted for this work.

Lists

This work does not appear on any lists.

History

Download catalog record: RDF / JSON / OPDS | Wikipedia citation
December 17, 2022 Created by MARC Bot Imported from marc_columbia MARC record