Record ID | marc_openlibraries_sanfranciscopubliclibrary/sfpl_chq_2018_12_24_run05.mrc:426491588:3692 |
Source | marc_openlibraries_sanfranciscopubliclibrary |
Download Link | /show-records/marc_openlibraries_sanfranciscopubliclibrary/sfpl_chq_2018_12_24_run05.mrc:426491588:3692?format=raw |
LEADER: 03692cam a2200529Ii 4500
001 ocn902657832
003 OCoLC
005 20171121090522.0
008 150202s2017 caua b 001 0 eng d
019 $a902660112$a907092057
020 $a1491914254
020 $a9781491914250
035 $a(OCoLC)902657832$z(OCoLC)902660112$z(OCoLC)907092057
037 $bOreilly & Associates Inc, C/O Ingram Pub Services 1 Ingram Blvd, LA Vergne, TN, USA, 37086$nSAN 631-8673
040 $aYDXCP$beng$erda$cYDXCP$dOCLCQ$dBDX$dBTCTA$dOCLCQ$dGK8$dSINLB$dOCLCO$dFM0$dJED$dNZWPM$dDAC$dOCLCF$dSFR$dUtOrBLW
049 $aSFRA
050 14 $aQA325.5$b.P38 2017
082 04 $a006.3/1$223
092 $a006.31$bP2776d
100 1 $aPatterson, Josh$c(Consultant),$eauthor.
245 10 $aDeep learning :$ba practitioner's approach /$cJosh Patterson and Adam Gibson.
250 $aFirst edition.
264 1 $aSebastopol, CA :$bO'Reilly,$c2017.
300 $axxi, 507 pages :$billustrations ;$c24 cm
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
338 $avolume$bnc$2rdacarrier
504 $aIncludes bibliographical references and index.
505 0 $aA review of machine learning -- Foundations of neural networks and deep learning -- Fundamentals of deep networks -- Major architecture of deep networks -- Building deep networks -- Tuning deep networks -- Tuning specific deep network architectures -- Vectorization -- Using deep learning and DL4J on Spark -- What is artificial intelligence? -- RL4J and reinforcement learning -- Numbers everyone should know -- Neural networks and backpropagation: a mathematical approach -- Using the ND4J API -- Using DataVec -- Working with DL4J from source -- Setting up DL4J projects -- Setting up GPUs for DL4J projects -- Troubleshooting DL4J installations.
520 $aHow can machine learning--especially deep neural networks--make a real difference in your organization? This hands-on guide not only provides practical information, but helps you get started building efficient deep learning networks. The authors provide the fundamentals of deep learning--tuning, parallelization, vectorization, and building pipelines--that are valid for any library before introducing the open source Deeplearning4j (DL4J) library for developing production-class workflows. Through real-world examples, you'll learn methods and strategies for training deep network architectures and running deep learning workflows on Spark and Hadoop with DL4J.
650 0 $aMachine learning.
650 0 $aNeural networks (Computer science)
650 0 $aOpen source software.
700 1 $aGibson, Adam,$eauthor.
907 $a.b33249180$b12-05-18$c01-26-17
998 $a(2)e7$a(3)xbt$a(2)m4$a(3)n4$ap3$ar3$b10-10-17$cm$da $e-$feng$gcau$h0$i12
907 $a.b33249180$b11-14-17$c01-26-17
938 $aBrodart$bBROD$n111986877
938 $aBaker and Taylor$bBTCP$nBK0016443156
938 $aYBP Library Services$bYANK$n12270353
980 $a0917 sh dj
998 $a(2)e7$a(3)xbt$a(2)m4$a(3)n4$ap3$ar3$b10-10-17$cm$da$e-$feng$gcau$h0$i12
994 $aC0$bSFR
999 $yMARS
945 $a006.31$bP2776d$d12-22-2018 17:49$e11-10-2018 11:35$f0$g0$h12-10-18$i31223122313167$j171$0503$k01-12-19$lxbtci$o-$p$49.99$q-$r-$s- $t1$u12$v4$w5$x7$y.i92273129$z10-27-17
945 $a006.31$bP2776d$d11-29-2017 16:42$e - - $f0$g0$h - - $i31223122313183$j0$0141$k12-20-17$lm4aaa$ol$p$49.99$q-$r-$sn $t1$u1$v0$w0$x1$y.i92273142$z10-27-17
945 $a006.31$bP2776d$d11-20-2018 18:39$e10-07-2018 15:22$f1$g0$h10-27-18$i31223122313175$j231$0800$k01-05-19$ln4aaa$ol$p$49.99$q-$r-$s- $t1$u11$v6$w5$x6$y.i92273154$z10-27-17