It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-030.mrc:150242734:8254
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-030.mrc:150242734:8254?format=raw

LEADER: 08254cam a2200685Mi 4500
001 14762075
005 20220703234355.0
006 m o d
007 cr |n|||||||||
008 191111s2020 flu ob 001 0 eng
010 $a 2019030705
035 $a(OCoLC)on1127538463
035 $a(NNC)14762075
040 $aAU@$beng$erda$cAU@$dYDX$dOCLCO$dTYFRS$dOCLCF$dUKAHL$dN$T$dUPM$dOCLCO
019 $a1132396659
020 $a9781315111131 (electronic bk)
020 $a1315111136 (electronic bk)
020 $a9781351618120$q(electronic bk. : Mobipocket)
020 $a1351618121$q(electronic bk. : Mobipocket)
020 $a9781351618144$q(electronic bk. : PDF)
020 $a1351618148$q(electronic bk. : PDF)
020 $a9781351618137$q(electronic bk. : EPUB)
020 $a135161813X$q(electronic bk. : EPUB)
020 $z9781138086081
020 $z1138086088
035 $a(OCoLC)1127538463$z(OCoLC)1132396659
037 $a9781315111131$bTaylor & Francis
050 4 $aTP156.S45$bL36 2020
072 7 $aSCI$x013060$2bisacsh
072 7 $aTEC$x009010$2bisacsh
072 7 $aTEC$x021000$2bisacsh
072 7 $aTDC$2bicssc
082 04 $a660/.2842$223
049 $aZCUA
100 1 $aLane, Alan M.,$eauthor.
245 10 $aSeparation process essentials /$cby Alan M. Lane.
250 $aFirst edition.
264 1 $aBoca Raton, FL :$bCRC Press/Taylor & Francis Group,$c[2020]
300 $a1 online resource (pages cm.)
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
504 $aIncludes bibliographical references and index.
520 $a"This book reviews and builds on material learned in the first chemical engineering courses such as Material and Energy Balances and Thermodynamics as applied to separations. It focuses on vapor-liquid systems such as distillation, absorption, and stripping and studies extraction and membrane separations. It does not attempt to be a comprehensive treatment of all separation processes but refers readers to other more complete works and is designed for a one semester course. It relies heavily on example problems including completely worked and explained problems followed by "Try This At Home" guided examples. Most examples have accompanying downloadable Excel spreadsheet simulations"--
588 $aDescription based on print version record
545 0 $aDr. Alan M. Lane is Professor Emeritus of Chemical and Biological Engineering at The University of Alabama. He has worked for Union Carbide Corporation (polymerization processes, 1984-1986), Battelle's Pacific Northwest Laboratories (nuclear waste treatment, 1977-1979) and Pacific Northwest Testing Laboratories (ASTM testing, summers 1968-1976). He has been a visiting scholar at Boise Cascade Corp. (dioxin from pulp bleaching, 1990), Qingdao Institute of Chemical Technology (chemical reactor modeling, 1993), the University of Wales (magnetic ink characterization, 1995), and Argonne National Laboratory (fuel processing to make hydrogen, 1999). Lane earned BS degrees in both Chemistry and Chemical Engineering from the University of Washington (Seattle) in 1977. He obtained a PhD degree in Chemical Engineering from the University of Massachusetts (Amherst) in 1984. His academic research projects have covered a broad spectrum of chemical reaction engineering, especially heterogeneous catalysis: chemical reactions during metal casting, dioxin formation during waste incineration, selective synthesis gas reactions, green manufacturing, diffusion in porous media, hydrogen production for fuel cells, and fuel cell electrode reactions. He also studied the complex rheology of magnetic inks for information storage on tape as part of the MINT Center. His teaching interests are focused in chemical reaction engineering and separation processes.
505 0 $aMachine generated contents note: pt. I Introduction -- 1.Introduction to Separation Processes -- 1.1.Summary -- 2.A Look Inside Your Chemical Engineering Toolbox -- 2.1.Process Flow Diagrams -- 2.2.Labeling -- 2.3.Material Balances -- 2.4.Energy Balances -- 2.5.Phase Equilibrium -- 2.6.Spreadsheets -- 2.7.Graphs and Tables -- 2.8.Computer-Aided Design Software -- 2.9.Work Ethic -- 2.10.Summary -- pt. II Distillation -- 3.Single-Stage Distillation: Material Balances -- 3.1.Systematic Solution Procedure -- 3.2.Mathematical Methods -- 3.2.1.Mole Balances -- 3.2.2.Phase Equilibrium -- 3.3.Graphical Methods -- 3.4.Summary -- 4.Single-Stage Distillation: Energy Balances -- 4.1.Calculation of Heat -- 4.2.Trick of the Trade: The Enthalpy Table -- 4.3.Adiabatic Flash Drum -- 4.4.Using Published Thermodynamic Data -- 4.5.Summary -- 5.Multi-Stage Distillation -- 5.1.Analysis of Two Stages -- 5.2.Analysis of Several Equilibrium Stages in Series -- 5.3.Summary -- 6.Mathematical Analysis of Distillation Columns -- 6.1.Overall Material Balance -- 6.2.Lewis Method -- 6.3.Summary -- 7.Graphical Design of Distillation Columns -- 7.1.Top Operating Line -- 7.2.Bottom Operating Line -- 7.3.Feed Stage "q" Line -- 7.4.Steppin' Off the Stages -- 7.5.Limiting Conditions -- 7.5.1.Total Reflux -- 7.5.2.Minimum Reflux -- 7.6.A Moment of Reflection -- 7.7.Summary -- 8.Energy Balances for Distillation Columns -- 8.1.Individual Stage Material and Energy Balances -- 8.2.Rigorous Analysis -- 8.3.CAD Results -- 8.4.Summary -- 9.Distillation: Variations on a Theme -- 9.1.Multiple Feeds -- 9.2.Open Steam -- 9.3.Side Products -- 9.4.Summary -- 10.Multicomponent Distillation -- 10.1.Lewis Method -- 10.2."Brute Force" Method -- 10.3.Summary and Discussion -- 11.Distillation of Non-Ideal Systems -- 11.1.Lewis Method -- 11.2.McCabe-Thiele Method -- 11.3.Summary -- pt. III Absorption and Stripping -- 12.Single-Stage Absorption and Stripping -- 12.1.Absorption -- 12.2.Stripping -- 12.3.Summary -- 13.Mathematical Analysis of Absorption/Stripping Columns -- 13.1.Two Stages -- 13.2.Solute-Free Variables -- 13.3.Multi-Stage Absorption Columns -- 13.4.An Interesting Observation (Again!) -- 13.5.Multi-Stage Stripping Columns -- 13.6.Yet Another Interesting Observation -- 13.7.Summary -- 14.Graphical Design of Absorption/Stripping Columns -- 14.1.Phase Equilibrium Curve -- 14.2.Absorber Operating Line -- 14.3.Minimum Absorbent Flow Rate -- 14.4.Stripping Operating Line -- 14.5.Summary -- 15.Multicomponent and Adiabatic Absorption Columns -- 15.1.Thermodynamics -- 15.2.Rigorous Analysis -- 15.3.Summary -- 16.Column Design -- 16.1.How Tall Should a Column Be? -- 16.2.How Tall Should a Tray Column Be? -- 16.2.1.Overall Column Efficiency -- 16.2.2.Murphree Efficiency -- 16.2.3.O'Connell Correlation -- 16.2.4.Estimating Efficiency Using Laboratory Data -- 16.3.How Tall Should a Packed Column Be? -- 16.3.1.The HETP Method -- 16.4.How Big Should a Column Be? -- 16.5.How Big Should a Tray Column Be? -- 16.6.How Big Should a Packed Column Be? -- 16.7.Summary -- pt. IV Solvent Extraction -- 17.Single-Stage Solvent Extraction -- 17.1.Liquid -- Liquid Equilibrium -- 17.2.Graphical Analysis -- 17.3.Mathematical Analysis -- 17.4.NRTL Equation -- 17.5.Summary -- 18.Mathematical Analysis of Solvent Extraction Columns -- 18.1.Two Parallel Stages -- 18.2.Two Countercurrent Stages -- 18.3.Three Countercurrent Stages -- 18.4.Summary -- 19.Graphical Design of Solvent Extraction Columns -- 19.1.Graphical Method -- 19.2.Summary -- pt. V Membranes -- 20.Membrane Separations -- 20.1.Gas Permeation -- 20.2.Reverse Osmosis -- 20.3.Summary.
650 0 $aSeparation (Technology)
650 0 $aExtraction (Chemistry)
650 6 $aSéparation (Technologie)
650 6 $aExtraction (Chimie)
650 7 $aSCIENCE / Chemistry / Industrial & Technical$2bisacsh
650 7 $aTECHNOLOGY / Engineering / Chemical & Biochemical$2bisacsh
650 7 $aTECHNOLOGY / Material Science$2bisacsh
650 7 $aExtraction (Chemistry)$2fast$0(OCoLC)fst00919005
650 7 $aSeparation (Technology)$2fast$0(OCoLC)fst01112723
655 4 $aElectronic books.
776 08 $iPrint version:$z9781138086081$z1138086088$w(DLC) 2019030705
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio14762075$zTaylor & Francis eBooks
852 8 $blweb$hEBOOKS