Record ID | marc_columbia/Columbia-extract-20221130-025.mrc:84120138:6909 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-025.mrc:84120138:6909?format=raw |
LEADER: 06909cam a2200805 i 4500
001 12200960
005 20221112224133.0
006 m o d
007 cr |n|||||||||
008 140918s2014 gw a ob 000 0 eng d
035 $a(OCoLC)ocn890951729
035 $a(NNC)12200960
040 $aYDXCP$beng$erda$epn$cYDXCP$dOCLCQ$dEBLCP$dCN3GA$dE7B$dDEBSZ$dIDEBK$dKNOVL$dCOO$dDEBBG$dN$T$dLOA$dOCLCQ$dCOCUF$dAGLDB$dICA$dUAB$dMOR$dCCO$dPIFBY$dZCU$dVT2$dSTF$dMERUC$dOCLCQ$dDEGRU$dGWDNB$dMERER$dOCLCQ$dD6H$dOCLCQ$dU3W$dOCLCF$dVTS$dCEF$dICG$dOCLCQ$dWYU$dDKC$dOCLCQ$dLEAUB$dCN6UV$dDGN$dAJS$dOCLCO$dOCLCQ
066 $c(S
016 7 $a1101865326$2DE-101
016 7 $a1114094374$2DE-101
019 $a890089648$a892554280$a958542638$a960200688$a961644333$a962616775$a974976828$a975044020$a979585188$a987676323$a987782784$a988523849$a992035026$a992837879$a992900956$a1000392170$a1013939519$a1086526023$a1192358996
020 $a3110369559$q(electronic bk.)
020 $a9783110369557$q(electronic bk.)
020 $a9781523100538$q(electronic bk.)
020 $a1523100532$q(electronic bk.)
020 $a9783110297973$q(e-ISBN)
020 $a3110297973$q(e-ISBN)
020 $z9783110297874$q(alk. paper)
020 $z3110297876$q(alk. paper)
020 $z3110297973
020 $z3110297981
020 $z9783110297980
020 $z9787040292800
020 $z7040292807
024 7 $a10.1515/9783110297973$2doi
035 $a(OCoLC)890951729$z(OCoLC)890089648$z(OCoLC)892554280$z(OCoLC)958542638$z(OCoLC)960200688$z(OCoLC)961644333$z(OCoLC)962616775$z(OCoLC)974976828$z(OCoLC)975044020$z(OCoLC)979585188$z(OCoLC)987676323$z(OCoLC)987782784$z(OCoLC)988523849$z(OCoLC)992035026$z(OCoLC)992837879$z(OCoLC)992900956$z(OCoLC)1000392170$z(OCoLC)1013939519$z(OCoLC)1086526023$z(OCoLC)1192358996
050 4 $aTA418.9.F85$bX53 2014
072 7 $aTA$2lcco
072 7 $aQC$2lcco
072 7 $aTEC$x009020$2bisacsh
082 04 $a624.1/5136$223
049 $aZCUA
100 1 $aXiao, Hongtian,$eauthor.
245 10 $aFracture mechanics in layered and graded solids :$banalysis using boundary element methods /$cHongtian Xiao, Zhongqi Yue.
264 1 $aBerlin ;$aBoston :$bDe Gruyter,$c[2014]
300 $a1 online resource (xii, 305 pages .)
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $bPDF
347 $atext file
504 $aIncludes bibliographical references.
588 0 $aPrint version record.
505 0 $6880-01$aChapter 1 Introduction; 1.1 Functionally graded materials; 1.2 Methods for fracture mechanics; 1.2.1 General; 1.2.2 Analytical methods; 1.2.3 Finite element method; 1.2.4 Boundary element method; 1.2.5 Meshless methods; 1.3 Overview of the book; References; Chapter 2 Fundamentals of Elasticity and Fracture Mechanics; 2.1 Introduction; 2.2 Basic equations of elasticity; 2.3 Fracture mechanics; 2.3.1 General; 2.3.2 Deformation modes of cracked bodies; 2.3.3 Three-dimensional stress and displacement fields.
505 8 $a2.3.4 Stress fields of cracks in graded materials and on the interface of bi-materials2.4 Analysis of crack growth; 2.4.1 General; 2.4.2 Energy release rate; 2.4.3 Maximum principal stress criterion; 2.4.4 Minimum strain energy density criterion; 2.4.5 The fracture toughness of graded materials; 2.5 Summary; References; Chapter 3 Yue's Solution of a 3D Multilayered Elastic Medium; 3.1 Introduction; 3.2 Basic equations; 3.3 Solution in the transform domain; 3.3.1 Solution formulation; 3.3.2 Solution expressed in terms of g.
505 8 $6880-02$a4.8.3 Strongly singular integrals4.9 Evaluation of displacements and stresses at an internal point; 4.10 Evaluation of boundary stresses; 4.11 Multi-region method; 4.12 Symmetry; 4.13 Numerical evaluation and results; 4.13.1 A homogeneous rectangular plate; 4.13.2 A layered rectangular plate; 4.14 Summary; References; Chapter 5 Application of the Yue's Solution-based BEM toCrack Problems; 5.1 Introduction; 5.2 Traction-singular element and its numerical method; 5.2.1 General; 5.2.2 Traction-singular element; 5.2.3 The numerical method of traction-singular elements.
520 $aMechanical responses of solid materials are governed by their material properties. The solutions for estimating and predicting the mechanical responses are extremely difficult, in particular for non-homogeneous materials. Among these, there is a special type of materials whose properties are variable only along one direction, defined as graded materials or functionally graded materials (FGMs). Examples are plant stems and bones. Artificial graded materials are widely used in mechanical engineering, chemical engineering, biological engineering, and electronic engineering. This work covers and d.
546 $aIn English.
650 0 $aFunctionally gradient materials$xFracture.
650 0 $aBoundary element methods.
650 0 $aFracture mechanics.
650 4 $aIngenieurwissenschaften und Maschinenbau.
650 6 $aMatériaux à gradient fonctionnel$xRupture.
650 6 $aMéthodes des équations intégrales de frontière.
650 6 $aMécanique de la rupture.
650 7 $aTECHNOLOGY & ENGINEERING$xCivil$xGeneral.$2bisacsh
650 7 $aBoundary element methods.$2fast$0(OCoLC)fst00837093
650 7 $aFracture mechanics.$2fast$0(OCoLC)fst00933536
700 1 $aYue, Zhongqi,$eauthor.
776 08 $iPrint version:$z9783110297874$z3110297876$w(DLC) 2014015597
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio12200960$zACADEMIC - General Engineering & Project Administration
880 8 $6505-01/(S$a3.3.3 Asymptotic representation of the solution matricesΦ(ρ, z) and Ψ(ρ, z)3.4 Solution in the physical domain; 3.4.1 Solutions in the Cartesian coordinate system; 3.4.2 Closed-form results for singular terms of the solution; 3.5 Computational methods and numerical evaluation; 3.5.1 General; 3.5.2 Singularities of the fundamental solution; 3.5.3 Numerical integration; 3.5.4 Numerical evaluation and results; 3.6 Summary; Appendix 1 The matrices of elastic coefficients; Appendix 2 The matrices in the asymptotic expressions of Φ(ρ, z) and Ψ(ρ, z).
880 8 $6505-02/(S$aAppendix 3 The matrices Gs[m, z, Φ] and Gt [m, z, Φ]References; Chapter 4 Yue's Solution-based Boundary Element Method; 4.1 Introduction; 4.2 Betti's reciprocal work theorem; 4.3 Yue's solution-based integral equations; 4.4 Yue's solution-based boundary integral equations; 4.5 Discretized boundary integral equations; 4.6 Assembly of the equation system; 4.7 Numerical integration of non-singular integrals; 4.7.1 Gaussian quadrature formulas; 4.7.2 Adaptive integration; 4.7.3 Nearly singular integrals; 4.8 Numerical integration of singular integrals; 4.8.1 General; 4.8.2 Weakly singular integrals.
852 8 $blweb$hEBOOKS