It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-025.mrc:53654872:7748
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-025.mrc:53654872:7748?format=raw

LEADER: 07748cam a2200613Ma 4500
001 12141800
005 20220430225607.0
006 m o d
007 cr cn|||||||||
008 021122s2003 vaua ob 001 0 eng d
035 $a(OCoLC)ocn708564339
035 $a(NNC)12141800
040 $aE7B$beng$epn$cE7B$dOCLCQ$dN$T$dOCLCQ$dKNOVL$dZCU$dKNOVL$dYDXCP$dEBLCP$dOCLCQ$dDEBSZ$dOCLCQ$dAZK$dUIU$dDKU$dOCLCQ$dVT2$dMERUC$dBUF$dREB$dOCLCF$dCEF$dRRP$dAU@$dOCLCQ$dWYU$dYOU$dVASCE$dOCLCQ$dERF$dOCLCQ$dS2H$dOCLCO
019 $a764550209$a961503955$a961845832$a962572059$a988716936$a999508937$a1026426246$a1058385132$a1064962243
020 $a9780784470954$q(electronic bk.)
020 $a0784470952$q(electronic bk.)
020 $z0784406480$q(pbk.)
020 $z9780784406489
035 $a(OCoLC)708564339$z(OCoLC)764550209$z(OCoLC)961503955$z(OCoLC)961845832$z(OCoLC)962572059$z(OCoLC)988716936$z(OCoLC)999508937$z(OCoLC)1026426246$z(OCoLC)1058385132$z(OCoLC)1064962243
050 4 $aTK3242$b.A525 2003eb
072 7 $aTEC$x007000$2bisacsh
082 04 $a621.319/22$221
049 $aZCUA
110 2 $aAmerican Society of Civil Engineers.$bSubcommittee on Fiber-Reinforced Composite Structures for Overhead Lines.
245 10 $aRecommended practice for fiber-reinforced polymer products for overhead utility line structures /$cprepared by the Task Committee on Fiber-Reinforced Composite Structures for Overhead Lines of the Structural Engineering Institute of the American Society of Civil Engineers.
260 $a[Reston, Va.] :$bAmerican Society of Civil Engineers,$c©2003.
300 $a1 online resource (xii, 76 pages) :$billustrations
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
490 1 $aASCE manuals and reports on engineering practice ;$vno. 104
504 $aIncludes bibliographical references and index.
588 0 $aPrint version record.
505 0 $aCONTENTS -- 1 STRUCTURES AND APPLICATIONS -- 1.1 Introduction -- 1.2 Structure Configurations -- 1.2.1 Cantilevered Structures -- 1.2.2 Guyed Structures -- 1.2.3 Framed Structures -- 1.2.4 Combined Structures -- 1.2.5 Latticed Tower Structures -- 1.3 Applications -- 1.3.1 Transmission and Distribution Structures -- 1.3.2 Substation Structures -- 1.3.3 Lighting Supports, Highway Signs, and Traffic Signal Structures -- 1.3.4 Communications Structures -- 2 INITIAL CONSIDERATIONS -- 2.1 Introduction -- 2.2 Physical Considerations -- 2.3 Guying
505 8 $a2.4 Grounding2.5 Deflection -- 2.6 Transportation and Erection -- 2.7 Climbing -- 2.8 Attached Items -- 2.9 Aesthetic Considerations -- 2.10 Load Testing -- 2.11 Durability -- 2.12 Foundations -- 3 MATERIALS AND MANUFACTURING PROCESSES -- 3.1 Introduction -- 3.1.1 Definition of FRP -- 3.1.2 Benefits -- 3.1.3 Composition -- 3.2 Materials -- 3.2.1 Polymer Resin Matrix -- 3.2.2 Fiber Reinforcements -- 3.2.3 Protective Material Systems -- 3.3 Manufacturing Processes -- 3.3.1 Pultrusion -- 3.3.2 Filament Winding -- 3.3.3 Centrifugal Casting
505 8 $a3.3.4 Resin Infusion4 DESIGN LOADS -- 4.1 Introduction -- 4.2 Load Considerations for Transmission and Distribution Overhead Construction -- 4.3 Wood Pole Equivalent Design Loads -- 5 PERFORMANCE-BASED CRITERIA FOR FRP PRODUCTS AND MATERIALS -- 5.1 Introduction -- 5.2 Designing FRP Products -- 5.3 Poles -- 5.3.1 Mechanical Properties -- 5.3.2 Durability -- 5.4 Connections -- 5.4.1 Step Attachments -- 5.4.2 Guying Attachments -- 5.4.3 Ground Wire Attachments -- 5.4.4 Slip Joints -- 5.4.5 Flange and Other Mechanical Joints -- 5.4.6 Foundations
505 8 $a6 SUGGESTED GUIDELINES FOR PERFORMANCE-BASED TESTS6.1 Introduction -- 6.2 Recommended Mechanical Tests -- 6.2.1 Static Bending (Horizontal Loading) Test -- 6.2.2 Bolt Torque Test -- 6.2.3 Bolt Pull-Through Test -- 6.2.4 Direct Load Shear Test -- 6.2.5 Field Drillability Test -- 6.2.6 Step Bolt Compatibility Test -- 6.3 Optional Mechanical Tests -- 6.3.1 Torsional Load Test -- 6.4 Surface Durability Tests -- 6.4.1 Ultraviolet (UV) Radiation Tests -- 6.4.2 Coating Tests -- 6.5 Electrical Tests -- 7 QUALITY ASSURANCE -- 7.1 Introduction
505 8 $a7.2 Design and Drawings7.3 Manufacturing Process -- 7.4 Material Standards Conformance -- 7.5 Tolerances -- 7.6 Surface Coatings -- 7.7 Inspection During Manufacture -- 7.8 Shipping and Receiving -- 7.9 Rejection -- 7.10 Full-Scale Structure Testing -- 7.11 Installation and Maintenance -- 8 ASSEMBLY AND ERECTION -- 8.1 Introduction -- 8.2 Pole Structures -- 8.2.1 Handling -- 8.2.2 Hauling -- 8.2.3 Framing -- 8.2.4 Field Drilling -- 8.2.5 Erection -- 8.2.6 Climbing -- 8.3 Foundations -- 8.3.1 Direct Embedment -- 8.3.2 Anchor Base -- 8.4 Storage
520 3 $aPrepared by the Task Committee on Fiber-Reinforced Composite Structures for Overhead Lines of the Structural Engineering Institute of ASCE. This Manual details best practices for the use of fiber-reinforced polymer (FRP) products in conductor support applications and FRP poles. Advancements and innovations in FRP and process technologies have resulted in lightweight high-strength FRP materials that are more cost-competitive than traditional construction materials, such as wood, steel, and prestressed concrete. In addition to a description of the advancements and innovations, the differences in performance between FRP structures and wood, steel, or prestressed concrete are also explained. FRP materials are used widely in many applications because they can be engineered to offer important advantages over traditional materials and also offer product engineers extraordinary design latitude. Engineers can choose from a wide range of material systems and processing techniques. FRP structures fall into one of five basic configurations: cantilevered structures; guyed structures; framed structures; combined structures; and latticed tower structures. The manual recommends and provides suggested guidelines for performance-based tests for all FRP poles. It also discusses factors that could affect the performance of FRP poles after installation, suggests field inspection methods, and provides basic maintenance and field repair techniques that can be used to extend the life of FRP poles: environment, UV radiation, temperature, moisture, ice and snow accumulations, fire, chemical exposure, biodegradation, mechanical fatigue, and electrical stress and leakage current.
650 0 $aElectric lines$xPoles and towers$xDesign and construction.
650 0 $aElectric lines$xPoles and towers$xMaterials.
650 0 $aFiber-reinforced plastics.
650 6 $aLignes électriques$xPoteaux et pylônes$xMatériaux.
650 6 $aMatières plastiques renforcées avec des fibres.
650 7 $aTECHNOLOGY & ENGINEERING$xElectrical.$2bisacsh
650 7 $aElectric lines$xPoles and towers$xDesign and construction.$2fast$0(OCoLC)fst00905121
650 7 $aFiber-reinforced plastics.$2fast$0(OCoLC)fst00923604
655 0 $aElectronic books.
655 4 $aElectronic books.
776 08 $iPrint version:$aAmerican Society of Civil Engineers. Subcommittee on Fiber-Reinforced Composite Structures for Overhead Lines.$tRecommended practice for fiber-reinforced polymer products for overhead utility line structures.$d[Reston, Va.] : American Society of Civil Engineers, ©2003$w(DLC) 2002043614
830 0 $aASCE manuals and reports on engineering practice ;$vno. 104.
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio12141800.001$zACADEMIC - Civil Engineering & Construction Materials
856 40 $uhttp://www.columbia.edu/cgi-bin/cul/resolve?clio12141800.002$zACADEMIC - Electrical & Power Engineering
852 8 $blweb$hEBOOKS