Record ID | marc_columbia/Columbia-extract-20221130-020.mrc:54375010:3804 |
Source | marc_columbia |
Download Link | /show-records/marc_columbia/Columbia-extract-20221130-020.mrc:54375010:3804?format=raw |
LEADER: 03804cam a2200349Ia 4500
001 9705782
005 20130502135806.0
008 120517s2012 enkab b 011 0 eng d
020 $a9781862393479 (hbk.)
020 $a1862393478 (hbk.)
029 1 $aAU@$b000050041667
035 $a(OCoLC)ocn793899235
035 $a(OCoLC)793899235
035 $a(NNC)9705782
040 $aYDXCP$beng$cYDXCP$dBTCTA$dCDX$dOCLCO$dILU
050 4 $aQE606$b.F385 2012
082 04 $a551.87
245 00 $aFaulting, fracturing and igneous intrusion in the earth's crust /$cedited by D. Healy ... [et al.].
260 $aLondon :$bGeological Society,$c2012.
300 $a253 p. :$bill. (some col.), maps (some col.) ;$c26 cm.
490 1 $aGeological Society special publication,$x0305-8719 ;$vno. 367
504 $aIncludes bibliographical references and index.
505 0 $aStress, faulting, fracturing and seismicity: the legacy of Ernest Masson Anderson -- Andersonian wrench faulting in a regional stress field during the 2010-2011 Canterbury, New Zealand, earthquake sequence -- Andersonian and Coulomb stresses in Central Costa Rica and its fault slip tendency potential: new insights into their associated seismic hazard -- Reverse fault rupturing: competition between non-optimal and optimal fault orientations -- The complexity of 3D stress-state changes during compressional tectonic inversion at the onset of orogeny -- Geomechanical modelling of fault reactivation in the Ceduna Sub-basin, Bight Basin, Australia -- Quantifying Neogene plate-boundary controlled uplift and deformation of the southern Australian margin -- Pressure conditions for shear and tensile failure around a circular magma chamber; insight from elasto-plastic modeling -- Stress fluctuation during thrust-related folding: Boltana anticline (Pyrenees, Spain) -- Stress deflections around salt diapirs in the Gulf of Mexico -- Evidence for non-Andersonian faulting above evaporites in the Nile Delta -- Modelling of sediment wedge movement along low-angle detachments using ABAQUS -- On the nucleation of non-Andersonian faults along phyllosilicate-rich mylonite belts -- Anisotropic poroelasticity and the response of faulted rock to changes in pore-fluid pressure -- The dilatancy-diffusion hypothesis and earthquake predictability -- Facsimile reproduction of The Dynamics of Faulting by E. M. Anderson.
520 3 $aGeologists have long grappled with understanding the mechanical origins of rock deformation. Stress regimes control the nucleation, growth and reactivation of faults and fractures; induce seismic activity; affect the transport of magma; and modulate structural permeability, thereby influencing the redistribution of hydrothermal and hydrocarbon fluids. Experimentalists endeavour to recreate deformation structures observed in nature under controlled stress conditions. Earth scientists studying earthquakes will attempt to monitor or deduce stress changes in the Earth as it actively deforms. All are building upon the pioneering research and concepts of Ernest Masson Anderson, dating back to the start of the twentieth century. This volume celebrates Anderson's legacy, with 14 original research papers that examine faulting and seismic hazard; structural inheritance; the role of local and regional stress fields; low angle faults and the role of pore fluids; supplemented by reviews of Andersonian approaches and a reprint of his classic paper of 1905.
650 0 $aFaults (Geology)
650 0 $aSurface fault ruptures.
650 0 $aIgneous rocks.
600 10 $aAnderson, E. M.$q(Ernest Masson),$d1877-1960.
700 1 $aAnderson, E. M.$q(Ernest Masson),$d1877-1960.
700 1 $aHealy, David,$d1965-
830 0 $aGeological Society special publication ;$vno. 367.
852 00 $bglg$hQE1$i.G331 no.367