| Record ID | marc_columbia/Columbia-extract-20221130-014.mrc:13700155:6484 |
| Source | marc_columbia |
| Download Link | /show-records/marc_columbia/Columbia-extract-20221130-014.mrc:13700155:6484?format=raw |
LEADER: 06484cam a2200409Ia 4500
001 6603848
005 20221122041235.0
008 070112r20062002nyu b 000 0 eng d
010 $a 2006933933
020 $a0387346570
020 $a9780387346571
029 1 $aYDXCP$b2480825
029 1 $aNLGGC$b297770152
035 $a(OCoLC)ocm77786736
035 $a(OCoLC)77786736
035 $a(NNC)6603848
035 $a6603848
040 $aLWU$cLWU$dEEM$dYDXCP$dBTCTA$dBAKER$dNLGGC$dOrLoB-B
084 $a31.70$2bcl
090 $aQA273.6$b.S55
100 1 $aSimon, Marvin Kenneth,$d1939-$0http://id.loc.gov/authorities/names/n50056191
245 10 $aProbability distributions involving Gaussian random variables :$ba handbook for engineers and scientists /$cMarvin K. Simon.
260 $aNew York :$bSpringer,$c2006,©2002.
300 $axix, 200 pages :$billustrations ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aThe Springer international series in engineering and computer science
500 $aOriginally published: Boston : Kluwer Academic Publishers 2002.
504 $aIncludes bibliographical references (p. [139]-141).
505 00 $tA Brief Biography of Carl Friedrich Gauss -- $g1.$tBasic Definitions and Notation -- $g2.$tFundamental One-Dimensional Variables -- $gA.$tGaussian -- $gB.$tRayleigh -- $gC.$tRician -- $gD.$tCentral Chi-Square -- $gE.$tNoncentral Chi-Square -- $gF.$tLog-Normal -- $g3.$tFundamental Multidimensional Variables -- $gA.$tGaussian -- $gB.$tRayleigh -- $gC.$tRician -- $gD.$tCentral Chi-Square -- $gE.$tNoncentral Chi-Square -- $gF.$tLog-Normal -- $g4.$tDifference of Chi-Square Random Variables -- $gA.$tIndependent Central Chi-Square (-) Central Chi-Square -- $gB.$tDependent Central Chi-Square (-) Central Chi-Square -- $gC.$tIndependent Noncentral Chi-Square (-) Central Chi-Square -- $gD.$tIndependent Central Chi-Square (-) Noncentral Chi-Square -- $gE.$tIndependent Noncentral Chi-Square (-) Noncentral Chi-Square -- $g5.$tSum of Chi-Square Random Variables -- $gA.$tIndependent Central Chi-Square (+) Central Chi-Square -- $gB.$tDependent Central Chi-Square (+) Central Chi-Square -- $gC.$tIndependent Noncentral Chi-Square (+) Central Chi-Square -- $gD.$tIndependent Noncentral Chi-Square (+) Noncentral Chi-Square -- $g6.$tProducts of Random Variables -- $gA.$tIndependent Gaussian (x) Gaussian (Both Have Zero Mean) -- $gB.$tDependent Gaussian (x) Gaussian (Both Have Zero Mean) -- $gC.$tIndependent Gaussian (x) Gaussian (One Has Zero Mean, Both Have Identical Variance) -- $gD.$tIndependent Gaussian (x) Gaussian (Both Have Nonzero Mean and Identical Variance) -- $gE.$tIndependent Rayleigh (x) Rayleigh -- $gF.$tDependent Rayleigh (x) Rayleigh -- $gG.$tIndependent Rice (x) Rayleigh -- $gH.$tIndependent Rice (x) Rice -- $gI.$tDependent Rayleigh Products -- $g7.$tRatios of Random Variables -- $gA.$tIndependent Gaussian [Division] Gaussian (Both Have Zero Mean) -- $gB.$tIndependent Gaussian [Division] Gaussian (One Has Zero Mean) -- $gC.$tIndependent Gaussian [Division] Gaussian (Both Have Nonzero Mean) -- $gD.$tDependent Gaussian [Division] Gaussian (Both Have Zero Mean) -- $gE.$tDependent Gaussian [Division] Gaussian (One Has Zero Mean) -- $gF.$tDependent Gaussian [Division] Gaussian (Both Have Nonzero Mean) -- $gG.$tIndependent Gaussian (Zero Mean) [Division] Rayleigh -- $gH.$tIndependent Gaussian (Zero Mean) [Division] Rice -- $gI.$tIndependent Rayleigh [Division] Rayleigh -- $gJ.$tDependent Rayleigh [Division] Rayleigh -- $gK.$tIndependent Rice [Division] Rayleigh -- $gL.$tIndependent Rice [Division] Rice -- $gM.$tDependent Rayleigh Ratios -- $g8.$tMaximum and Minimum of Pairs of Random Variables -- $gA.$tIndependent Gaussian -- $gB.$tDependent Gaussian -- $gC.$tIndependent Rayleigh -- $gD.$tDependent Rayleigh -- $gE.$tIndependent Log-Normal -- $gF.$tDependent Log-Normal -- $g9.$tQuadratic Forms -- $gA.$tBoth Vectors Have Zero Mean -- $gB.$tOne or Both Vectors Have Nonzero Mean -- $gC.$tA Reduced Quadratic Form Where the Vectors Have Different Numbers of Dimensions -- $gD.$tGeneral Hermetian Quadratic Forms -- $g10.$tOther Miscellaneous Forms -- $gA.$tIndependent Rayleigh (+) Rayleigh -- $gB.$tIndependent Gaussian (x) Rayleigh -- $gC.$tIndependent Gaussian (x) Rayleigh (+) Gaussian -- $gD.$tIndependent Gaussian (+) Rayleigh -- $gE.$tGeneral Products of Ratios of Independent Gaussians -- $gAppendix A.$tAlternative Forms -- $g1.$tOne-Dimensional Distributions and Functions -- $gA.$tThe Gaussian Q-Function -- $gB.$tThe Marcum Q-Function -- $gC.$tThe Nuttall Q-Function -- $gD.$tThe Complementary Incomplete Gamma Function -- $g2.$tTwo-Dimensional Distributions and Functions -- $gA.$tThe Gaussian Q-Function -- $gAppendix B.$tIntegrals Involving Q-Functions -- $g1.$tThe Gaussian Q-Function -- $gA.$tQ-Function and x -- $gB.$tQ-Function with Exponentials and x -- $gC.$tQ-Function with Exponentials, Bessel Functions and x -- $g2.$tThe First-Order Marcum Q-Function -- $gA.$tQ-Function with One Linear Argument -- $gB.$tQ-Function with One Linear Argument and Exponentials -- $gC.$tQ-Function with One Linear Argument and x -- $gD.$tQ-Function with One Linear Argument, Exponentials and Powers of x -- $gE.$tQ-Function with One Linear Argument, Bessel Functions, Exponentials and Powers of x -- $gF.$tProduct of Two Q-Functions with One Linear Argument -- $gG.$tQ-Function with Two Linear Arguments and x -- $gH.$tQ-Function with Two Linear Arguments, Exponentials and x -- $g3.$tThe Generalized (Mth-Order) Marcum Q-Function -- $gA.$tQ-Function with One Linear Argument and Powers of x -- $gB.$tQ-Function with One Linear Argument, Exponentials and Powers of x -- $gC.$tQ-Function with One Linear Argument, Bessel Functions, Exponentials and Powers of x -- $gD.$tQ-Function with Two Linear Arguments, Exponentials and Powers of x -- $gAppendix C.$tBounds on the Gaussian Q-Function and the Marcum Q-Function -- $g1.$tThe Gaussian Q-Function -- $g2.$tThe Marcum Q-Function.
650 0 $aGaussian distribution.$0http://id.loc.gov/authorities/subjects/sh85053556
650 0 $aRandom variables.$0http://id.loc.gov/authorities/subjects/sh85111355
650 17 $aWaarschijnlijkheidstheorie.$2gtt
650 17 $aRandom walks (statistiek)$2gtt
650 17 $aGauss-processen.$2gtt
830 0 $aInternational series in engineering and computer science.$0http://id.loc.gov/authorities/names/no2006110082
852 00 $bmat$hQA273.6$i.S55 2006