It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-009.mrc:179198416:2535
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-009.mrc:179198416:2535?format=raw

LEADER: 02535pam a2200337 a 4500
001 4170207
005 20221027045120.0
008 030417t20042004flua b 001 0 eng
010 $a 2003051472
015 $aGBA3-Y5817
020 $a1584883170
035 $a(OCoLC)ocm51780817
035 $a(NNC)4170207
035 $a4170207
040 $aDLC$cDLC$dYDX$dUKM$dOrLoB-B
050 00 $aQA280$b.C4 2004
082 00 $a519.5/5$221
100 1 $aChatfield, Christopher.$0http://id.loc.gov/authorities/names/n50036221
245 14 $aThe analysis of time series :$ban introduction /$cChris Chatfield.
250 $a6th ed.
260 $aBoca Raton, FL :$bChapman & Hall/CRC,$c[2004], ©2004.
300 $axiii, 333 pages :$billustrations ;$c24 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aTexts in statistical science
504 $aIncludes bibliographical references (p. 315-327) and index.
505 00 $g1.$tIntroduction -- $g2.$tSimple Descriptive Techniques -- $g3.$tSome Time-Series Models -- $g4.$tFitting Time-Series Models in the Time Domain -- $g5.$tForecasting -- $g6.$tStationary Processes in the Frequency Domain -- $g7.$tSpectral Analysis -- $g8.$tBivariate processes -- $g9.$tLinear Systems -- $g10.$tState-Space Models and the Kalman Filter -- $g11.$tNon-Linear Models -- $g12.$tMultivariate Time-Series Modelling -- $g13.$tSome More Advanced Topics -- $g14.$tExamples and Practical Advice -- $gA.$tFourier, Laplace and z-Transforms -- $gB.$tDirac Delta Function -- $gC.$tCovariance and Correlation -- $gD.$tSome MINITAB and S-PLUS Commands.
520 1 $a"Since 1975, The Analysis of Time Series: An Introduction has introduced legions of statistics students and researchers to the theory and practice of time series analysis. The sixth edition provides an accessible, comprehensive introduction to the theory and practice of time series analysis. The treatment covers a wide range of topics, including ARIMA probability models, forecasting methods, spectral analysis, linear systems, state-space models, and the Kalman filter. It also addresses nonlinear, multivariate, and long-memory models. The author has carefully updated each chapter, added new discussions, incorporated new datasets, and made those datasets available at www.crcpress.com."--BOOK JACKET.
650 0 $aTime-series analysis.$0http://id.loc.gov/authorities/subjects/sh85135430
830 0 $aTexts in statistical science.$0http://id.loc.gov/authorities/names/n94038042
852 00 $bmat$hQA280$i.C4 2004