| Record ID | marc_columbia/Columbia-extract-20221130-005.mrc:146854114:3206 |
| Source | marc_columbia |
| Download Link | /show-records/marc_columbia/Columbia-extract-20221130-005.mrc:146854114:3206?format=raw |
LEADER: 03206mam a2200409 a 4500
001 2111877
005 20220615204941.0
008 971016t19981998riu b 001 0 eng
010 $a 97044426
020 $a0821805843 (acid-free paper)
035 $a(OCoLC)ocm37843800
035 $9ANE7700CU
035 $a(NNC)2111877
035 $a2111877
040 $aDLC$cDLC$dOrLoB-B
041 1 $aeng$hrus
050 00 $aQA273.67$b.D3913 1998
082 00 $a519.2$221
100 1 $aDavydov, I͡U. A.$q(I͡Uriĭ Aleksandrovich),$d1944-$0http://id.loc.gov/authorities/names/n97104795
240 10 $aLokalʹnye svoĭstva raspredeleniĭ stokhasticheskikh funkt͡sionalov.$lEnglish$0http://id.loc.gov/authorities/names/n97104817
245 10 $aLocal properties of distributions of stochastic functionals /$cYu. A. Davydov, M.A. Lifshits, N.V. Smorodina ; [translated from the Russian by V.E. Nazaĭkinskiĭ and M.A. Shishkova].
260 $aProvidence, R.I. :$bAmerican Mathematical Society,$c[1998], ©1998.
300 $axiii, 184 pages ;$c27 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aTranslations of mathematical monographs,$x0065-9282 ;$vv. 173
504 $aIncludes bibliographical references (p. 175-181) and index.
505 00 $gCh. 1.$tPreliminaries.$g1.$tRandom processes and their distributions.$g2.$tConvergence of probability measures.$g3.$tMeasurable partitions and systems of conditional measures --$gCh. 2.$tMethods for Studying Distributions of Functionals.$g4.$tStratifications of measures.$g5.$tSuperstructure.$g6.$tDifferential operators --$gCh. 3.$tGaussian Functionals.$g7.$tGaussian measures on linear spaces.$g8.$tSmooth functionals.$g9.$tDistributions of smooth functionals.$g10.$tConvexity and the isoperimetric property of the Gaussian measure.$g11.$tConvex functionals and their distributions.$g12.$tDistribution of the norm --$gCh. 4.$tPoisson Functionals.$g13.$tThe configuration space.$g14.$tDifferential calculus on the configuration space.$g15.$tThe Gauss-Ostrogradskii formula.$g16.$tSmooth functionals.$g17.$tDistribution of the norm of a stable vector --$gCh. 5.$tLocal Limit Theorems.$g18.$tStrong convergence theorems.$g19.$tStrong convergence of distributions of Gaussian functionals.
505 80 $g20.$tThe local invariance principle.$g21.$tThe local invariance principle in the case of attraction to a stable law.$g22.$tThe infinite-dimensional local limit theorem.
650 0 $aLimit theorems (Probability theory)$0http://id.loc.gov/authorities/subjects/sh85077023
650 0 $aDistribution (Probability theory)$0http://id.loc.gov/authorities/subjects/sh85038545
650 0 $aFunctionals.$0http://id.loc.gov/authorities/subjects/sh85052326
650 0 $aStochastic processes.$0http://id.loc.gov/authorities/subjects/sh85128181
700 1 $aLifshit︠s︡, M. A.$q(Mikhail Anatolʹevich),$d1956-$0http://id.loc.gov/authorities/names/n95000316
700 1 $aSmorodina, N. V.$q(Natalʹi͡a Vasilʹevna),$d1959-$0http://id.loc.gov/authorities/names/n97104808
830 0 $aTranslations of mathematical monographs ;$vv. 173.$0http://id.loc.gov/authorities/names/n42025062
852 00 $bmat$hQA3$i.T73 v.173