It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-004.mrc:512289321:1587
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-004.mrc:512289321:1587?format=raw

LEADER: 01587fam a2200325 a 4500
001 1903756
005 20220609023322.0
008 950411s1995 gw a b 001 0 eng
010 $a 95014979
020 $a3110114801 (alk. paper)
035 $a(OCoLC)32389040
035 $a(OCoLC)ocm32389040
035 $9ALZ6536CU
035 $a(NNC)1903756
035 $a1903756
040 $aDLC$cDLC$dDLC$dOrLoB-B
050 00 $aQA554$b.C66 1995
082 00 $a516/.5$220
245 00 $aCompact projective planes :$bwith an introduction to octonion geometry /$cby Helmut Salzmann [and others].
260 $aBerlin ;$aNew York :$bWalter de Gruyter,$c1995.
300 $axiii, 688 pages :$billustrations ;$c25 cm.
336 $atext$btxt$2rdacontent
337 $aunmediated$bn$2rdamedia
490 1 $aDe Gruyter expositions in mathematics,$x0938-6572 ;$v21
504 $aIncludes bibliographical references (p. [643]-677) and index.
505 00 $gCh. 1.$tThe classical planes --$gCh. 2.$tBackground on planes, coordinates and collineations --$gCh. 3.$tGeometries on surfaces --$gCh. 4.$tCompact projective planes --$gCh. 5.$tAlgebraic topology of compact, connected planes --$gCh. 6.$tHomogeneity --$gCh. 7.$tFour-dimensional planes --$gCh. 8.$tEight- and sixteen-dimensional planes --$gCh. 9.$tAppendix: Tools from topology and Lie theory.
650 0 $aProjective planes.$0http://id.loc.gov/authorities/subjects/sh85107382
700 1 $aSalzmann, H.$0http://id.loc.gov/authorities/names/n85818282
830 0 $aDe Gruyter expositions in mathematics ;$v21.
852 00 $bmat$hQA554$i.C66 1995