It looks like you're offline.
Open Library logo
additional options menu

MARC Record from marc_columbia

Record ID marc_columbia/Columbia-extract-20221130-004.mrc:23983177:5971
Source marc_columbia
Download Link /show-records/marc_columbia/Columbia-extract-20221130-004.mrc:23983177:5971?format=raw

LEADER: 05971fam a2200385 a 4500
001 1517492
005 20220602052443.0
008 930302s1994 enka b 001 0 eng
010 $a 93003418
020 $a0521443504 (hardback)
020 $a0521448107 (pbk.)
035 $a(OCoLC)27769930
035 $a(OCoLC)ocm27769930
035 $9AJV1694CU
035 $a(NNC)1517492
035 $a1517492
040 $aDLC$cDLC$dDLC
050 00 $aQC718$b.S76 1994
082 00 $a530.4/4$220
100 1 $aSturrock, Peter A.$q(Peter Andrew)$0http://id.loc.gov/authorities/names/n83827192
245 10 $aPlasma physics :$ban introduction to the theory of astrophysical, geophysical, and laboratory plasmas /$cPeter A. Sturrock.
260 $aCambridge [England] ;$aNew York :$bCambridge University Press,$c1994.
300 $axii, 335 pages :$billustrations ;$c26 cm
336 $atext$2rdacontent
337 $aunmediated$2rdamedia
338 $avolume$2rdacarrier
504 $aIncludes bibliographical references (p. 325-328) and indexes.
505 0 $a1. Introduction -- 2. Basic concepts. 2.1. Collective effects. 2.2. Charge neutrality and the Debye length. 2.3. Debye shielding. 2.4. The plasma parameter. 2.5. Plasma oscillations -- 3. Orbit theory - uniform fields. 3.1. Particle motion in a static, uniform magnetic field. 3.2. Particle motion in electric and magnetic fields. 3.3. Particle motion in magnetic and gravitational fields. 3.4. Particle motion in a time-varying uniform magnetic field -- 4. Adiabatic invariants. 4.1. General adiabatic invariants. 4.2. The first adiabatic invariant: magnetic moment. 4.3. Relativistic form of the first adiabatic invariant. 4.4. The second adiabatic invariant: the bounce invariant. 4.5. Magnetic traps. 4.6. The third adiabatic invariant -- 5. Orbit theory. 5.1. Particle motion in a static inhomogeneous magnetic field. 5.2. Discussion of orbit theory for a static inhomogeneous magnetic field. 5.3. Drifts in the Earth's magnetosphere. 5.4. Motion in a time-varying electric field.
505 0 $a5.5. Particle motion in a rapidly time-varying electromagnetic field -- 6. Electromagnetic waves in a cold electron plasma. 6.1. The wave equation. 6.2. Waves in a cold electron plasma without a magnetic field. 6.3. Effect of collisions. 6.4. Electromagnetic waves in a cold magnetized electron plasma. 6.5. Wave propagation normal to the magnetic field. 6.6. Propagation parallel to the magnetic field. 6.7. Faraday rotation. 6.8. Dispersion of radio waves. 6.9. Whistlers -- 7. Electromagnetic waves in an electron-ion plasma. 7.1. The dispersion relation. 7.2. Wave propagation in an electron plasma -- 8. Two-stream instability. 8.1. Particle streams of zero temperature. 8.2. Two-stream instability. 8.3. Two identical but opposing streams. 8.4. Stream moving through a stationary plasma -- 9. Electrostatic oscillations in a plasma of nonzero temperature. 9.1. Distribution functions. 9.2. Linear perturbation analysis of the Vlasov equation. 9.3. Dispersion relation for a warm plasma.
505 0 $a9.4. The Landau initial-value problem. 9.5. Gardner's theorem. 9.6. Weakly damped waves - Landau damping. 9.7. The Penrose criterion for stability -- 10. Collision theory. 10.1. Lagrange expansion. 10.2. The Fokker-Planck equation. 10.3. Coulomb collisions. 10.4. The Fokker-Planck equation for Coulomb collisions. 10.5. Relaxation times -- 11. MHD equations. 11.1. The moment equations. 11.2. Fluid description of an electron-proton plasma. 11.3. The collision term. 11.4. Moment equations for each species. 11.5. Fluid description. 11.6. Ohm's law. 11.7. The ideal MHD equations. 11.8. The conductivity tensor -- 12. Magnetohydrodynamics. 12.1. Evolution of the magnetic field. 12.2. Frozen magnetic field lines. 12.3. Diffusion of magnetic field lines. 12.4. The virial theorem. 12.5. Extension of the virial theorem. 12.6. Stability analysis using the virial theorem -- 13. Force-free magnetic-field configurations -- 13.1. Introduction. 13.2. Linear force-free fields. 13.3. Examples of linear force-free fields.
505 0 $a13.4. The generating-function method. 13.5. Calculation of magnetic-field configurations. 13.6. Linear force-free fields of cylindrical symmetry. 13.7. Uniformly twisted cylindrical force-free field. 13.8. Magnetic helicity. 13.9. Woltjer's theorem. 13.10. Useful relations for semi-infinite force-free magnetic-field configurations -- 14. Waves in MHD systems. 14.1. MHD waves in a uniform plasma. 14.2. Waves in a barometric medium -- 15. Magnetohydrodynamic stability. 15.1. The linear pinch. 15.2. Stability analysis. 15.3. Boundary conditions. 15.4. Internally homogeneous linear pinch. 15.5. Application of the boundary conditions -- 16. Variation principle for MHD systems. 16.1. Variation principle for a spatially distributed system. 16.2. Convection of magnetic field. 16.3. Variation principle of MHD motion. 16.4. Small-amplitude disturbances -- 17. Resistive instabilities -- 17.1. Introductory remarks. 17.2. Current sheet configuration. 17.3. Evolution of the magnetic field. 17.4. Equation of motion.
505 0 $a17.5. The tearing mode. 17.6. Solution of the differential equations -- 18. Stochastic processes. 18.1. Stochastic diffusion. 18.2. One-dimensional stochastic acceleration. 18.3. Stochastic diffusion, Landau damping and quasilinear theory -- 19. Interaction of particles and waves. 19.1. Quantum-mechanical description. 19.2. Transition to the classical limit. 19.3. The three-state model: emission and absorption. 19.4. Diffusion equation for the particle distribution function -- Appendix A Units and constants -- Appendix B Group velocity -- Appendix C Amplifying and evanescent waves, convective and absolute instability.
650 0 $aPlasma (Ionized gases)$0http://id.loc.gov/authorities/subjects/sh85103050
650 0 $aMagnetohydrodynamics.$0http://id.loc.gov/authorities/subjects/sh85079784
852 00 $boff,eng$hQC718$i.S76 1994