It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:216572462:3734
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.14.20150123.full.mrc:216572462:3734?format=raw

LEADER: 03734nam a22004935a 4500
001 014158561-7
005 20141003190735.0
008 130202s2012 gw | o ||0| 0|eng d
020 $a9783642325359
020 $a9783642325342 (ebk.)
020 $a9783642325359
020 $a9783642325342
024 7 $a10.1007/978-3-642-32535-9$2doi
035 $a(Springer)9783642325359
040 $aSpringer
050 4 $aQA808.2
050 4 $aTA405-409.3
072 7 $aTEC009070$2bisacsh
072 7 $aTEC021000$2bisacsh
072 7 $aTG$2bicssc
082 04 $a620.1$223
100 1 $aForbes, Jerry W.,$eauthor.
245 10 $aShock Wave Compression of Condensed Matter :$bA Primer /$cby Jerry W. Forbes.
264 1 $aBerlin, Heidelberg :$bSpringer Berlin Heidelberg :$bSpringer,$c2012.
300 $aXV, 374 p. 201 illus., 12 illus. in color.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aShock Wave and High Pressure Phenomena
505 0 $aIntroduction of Shock Wave Physics of Condensed Matter -- Plane One-Dimensional Shock Waves -- Impedance Matching Technique -- Experimental Techniques -- Thermodynamics of Shock Waves -- Solids -- Differential Conservation Equations and Time-dependent Flow -- First-order Polymorphic and Melting Phase Transitions Under Shock Loading -- Secondary Ideal High Explosives, Non-steady Initiation Process, and Steady Detonation Wave Models -- Steady Detonation Waves in Right Circular Cylinders of Non-ideal Explosives -- Special Topics: Lagrangian Coordinates, Spall, and Radiation Induced Shocks -- Appendices.
520 $aThis book introduces the core concepts of the shock wave physics of condensed matter, taking a continuum mechanics approach to examine liquids and isotropic solids. The text primarily focuses on one-dimensional uniaxial compression in order to show the key features of condensed matter’s response to shock wave loading. The first four chapters are specifically designed to quickly familiarize physical scientists and engineers with how shock waves interact with other shock waves or material boundaries, as well as to allow readers to better understand shock wave literature, use basic data analysis techniques, and design simple 1-D shock wave experiments. This is achieved by first presenting the steady one-dimensional strain conservation laws using shock wave impedance matching, which insures conservation of mass, momentum and energy. Here, the initial emphasis is on the meaning of shock wave and mass velocities in a laboratory coordinate system. An overview of basic experimental techniques for measuring pressure, shock velocity, mass velocity, compression and internal energy of steady 1-D shock waves is then presented. In the second part of the book, more advanced topics are progressively introduced: thermodynamic surfaces are used to describe equilibrium flow behavior, first-order Maxwell solid models are used to describe time-dependent flow behavior, descriptions of detonation shock waves in ideal and non-ideal explosives are provided, and lastly, a select group of current issues in shock wave physics are discussed in the final chapter.
650 20 $aThermodynamics.
650 10 $aEngineering.
650 0 $aEngineering.
650 0 $aMaterials.
650 0 $aThermodynamics.
650 24 $aCondensed Matter Physics.
650 24 $aContinuum Mechanics and Mechanics of Materials.
650 24 $aEngineering Thermodynamics, Heat and Mass Transfer.
776 08 $iPrinted edition:$z9783642325342
830 0 $aShock Wave and High Pressure Phenomena.
988 $a20140910
906 $0VEN