It looks like you're offline.
Open Library logo
additional options menu

MARC Record from harvard_bibliographic_metadata

Record ID harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:978814734:2173
Source harvard_bibliographic_metadata
Download Link /show-records/harvard_bibliographic_metadata/ab.bib.13.20150123.full.mrc:978814734:2173?format=raw

LEADER: 02173nam a22005295a 4500
001 013860036-8
005 20140103191456.0
008 131125s1983 xxu| s ||0| 0|eng d
020 $a9781489928436
020 $a9781489928436
020 $a9781489928450
024 7 $a10.1007/978-1-4899-2843-6$2doi
035 $a(Springer)9781489928436
040 $aSpringer
050 4 $aQA351
072 7 $aPBKF$2bicssc
072 7 $aMAT034000$2bisacsh
072 7 $aMAT037000$2bisacsh
082 04 $a515.5$223
100 1 $aMumford, David,$eauthor.
245 10 $aTata Lectures on Theta I /$cby David Mumford.
264 1 $aBoston, MA :$bBirkhäuser Boston :$bImprint: Birkhäuser,$c1983.
300 $aXIII, 240 p.$bonline resource.
336 $atext$btxt$2rdacontent
337 $acomputer$bc$2rdamedia
338 $aonline resource$bcr$2rdacarrier
347 $atext file$bPDF$2rda
490 1 $aProgress in Mathematics,$x0743-1643 ;$v28
505 0 $aIntroduction -- Introduction and motivation: theta functions in one variable -- Basic results on theta functions in several variables.
520 $aThe first of a series of three volumes surveying the theory of theta functions and its significance in the fields of representation theory and algebraic geometry, this volume deals with the basic theory of theta functions in one and several variables, and some of its number theoretic applications. Requiring no background in advanced algebraic geometry, the text serves as a modern introduction to the subject.
650 20 $aNumber theory.
650 20 $aFunctional analysis.
650 20 $aFunctions of complex variables.
650 20 $aFunctions, Special.
650 10 $aMathematics.
650 0 $aMathematics.
650 0 $aFunctional analysis.
650 0 $aFunctions of complex variables.
650 0 $aDifferential equations, partial.
650 0 $aFunctions, special.
650 0 $aNumber theory.
650 24 $aSeveral Complex Variables and Analytic Spaces.
650 24 $aHistory of Mathematical Sciences.
776 08 $iPrinted edition:$z9781489928450
830 0 $aProgress in Mathematics ;$v28.
988 $a20131203
906 $0VEN