It looks like you're offline.
Open Library logo
additional options menu

Nuclear reactor theory and design → Diff

Added
Modified
Removed
Not changed
Revision 2 by WorkBot December 15, 2009
Revision 3 by Anonymous March 27, 2010
description
0 Table of Contents Page
1
2
3 CHAPTER 1 INTRODUCTION  1
4
5 1.1 Background                                      1
6 1.2 Historical Approach           2
7 1.3 Neutron Density      5
8 1.4 Reaction Rates           6
9 1.5 Design Approximations     11
10 1.6 Reactor Design Implications     12
11
12 CHAPTER 2 INTERACTIONS OF NEUTRONS
13 WITH MATTER 17
14
15 2.1 Compound Nucleus - Cross Sections          17
16 2.2 Nuclear Systematics of Naturally Occurring
17     Isotopes                     23
18 2.3 Level Widths and Partial Cross Sections 25
19 2.3 Cross Section for Formulation of the Compound
20     Nucleus               26
21 2.5 Reaction Probabilities     28
22 2.6 Kinematics in the Center-of-Mass System          30
23 2.7 Relationships Between the Scattering
24 Angles in the LAB and CM Systems     36
25
26 CHAPTER 3 NUCLEAR FISSION 45
27
28 3.1 Binding Energy          45
29 3.2 Liquid Drop Model of Fission     48
30 3.3 Fission Product Yields     55
31 3.4 Fission Neutron Spectrum          57
32 3.5 Prompt Neutrons     59
33 3.6 Delayed Neutrons     62
34 3.7 Energy Production in Fission     64
35
36 CHAPTER 4 DERIVATION OF THE NEUTRON
37 DIFFUSION EQUATION 69
38
39 4.1 Fick's Law Derivation of the Diffusion Equation   69
40 4.2* The One-Speed Transport Equation     74
41 4.3* One-Dimensional, One-Speed Transport Equation     80
42 4.4* Derivation of the P1 Equations          86
43 4.5 The P1 Diffusion Theory Approximation     89
44 4.6 Comments on the P1 Equations of Diffusion Theory  92
45 4.7* Alternate Derivation of the Diffusion Equation    94
46
47
48
49
50
51
52 CHAPTER 5 ANALYTIC SOLUTIONS TO THE
53 ONE-SPEED DIFFUSION EQUATION 99
54
55 5.1 Partial Currents and the Extrapolated Boundary
56     Condition                     99
57 5.2 Source Plane Boundary Conditions         107
58 5.3 Two Region Planar Problem    111
59 5.4 Point and Line Sources    113
60 5.5 Solution to the Inhomogeneous Source Problem    120
61 5.6* General Derivation of the Green's Function
62     Superposition Integral    123
63 5.7 Diffusion Length         126
64 5.8 Critical Reactors    128
65 5.9 Homogeneous Bare Critical Slab Reactor    131
66 5.10 Two Region Slab Reactor    135
67 5.11 One-Dimensional Bare Homogeneous Cylindrical Reactor         138
68 5.12 Bare Homogeneous Spherical Reactor    141
69 5.13 Comments on Multi-region One-Dimensional
70     Reactors         145
71 5.14 Multidimensional Reactors    149
72 5.15* Diffusion Length Experiment    152
73
74 CHAPTER 6 FEW-GROUP EQUATIONS AND
75 NUMERICAL SOLUTION METHODS 165
76
77 6.1 Energy-Dependent Diffusion Equation 165
78 6.2 Few-Group Diffusion Equations     167
79 6.3 Finite Difference Few-Group Equations in
80 One Dimension          172
81 6.4 Specification of Boundary Conditions     180
82 6.5 Direct Solution of the Source Problem     182
83 6.6* Iterative Solution of the Source Problem 187
84 6.7 Iterative Solution of the Critical Reactor
85 Problem          193
86 6.8* Convergence of the Outer Iteration to the
87 Fundamental Mode Solution     198
88 6.9 Qualitative Comparison Between One-Speed
89 and Two-Group Solutions     202
90
91 CHAPTER 7 PERTURBATION THEORY 211
92
93 7.1 Adjoint Equations     211
94 7.2 Matrix Form of the Adjoint Equations     217
95 7.3 First-Order Perturbation Theory     220
96 7.4* Perturbation Effects on Higher Harmonic
97 Modes     224
98 7.5 Control Rod Worth     226
99 7.6* Inhomogeneous Case          230
100
101
102
103
104
105 CHAPTER 8 REACTOR KINETICS 239
106
107 8.1 Multigroup Reactor Kinetics Equation     240
108 8.2 Interpretation of Spatial Kinetics Results     246
109 8.3 Point Kinetics Equations          249
110 8.4 Results for One Group of Delayed Neutrons 255
111 8.5 Experimental Measurement of Control Rod Worth 261
112 8.6* "Point" Kinetics Equations Derivation     263
113 8.7 Method of Obtaining   and       267
114
115 CHAPTER 9 POISONING, TEMPERATURE EFFECTS,
116 AND DEPLETION IN REACTORS 275
117
118 9.1 The Fission Product Xenon-135     276
119 9.2 Xenon Poisoning     277
120 9.3 General Transient Solution for Buildup
121 of Xenon and Iodine          279
122 9.4 Spatial Xenon Transients          283
123 9.5 Xenon-Induced Spatial Power Oscillations 284
124 9.6 Samarium Poisoning          289
125 9.7 Temperature Effects on Reactivity     293
126 9.8 Effect of Thermal Feedback on Reactor Kinetics 297
127 9.9 Depletion          308
128
129 CHAPTER 10 NEUTRON MODERATION 321
130
131 10.1 Scattering Collisions     322
132 10.2 Slowing Down Problem     329
133 10.3 Slowing Down in Hydrogen With No Absorption 330
134 10.4 The Slowing Down Density in Hydrogen,
135 No Absorption          333
136 10.5 Moderation for A > 1, No Absorption 335
137 10.6 Asymptotic Slowing Down Theory, A > 1,
138 No Absorption          339
139 10.7* Slowing Down in Hydrogen With Absorption 343
140 10.8* Special Cases of Slowing Down With
141 Absorption, A > 1     347
142 10.9 Final Comments                 353
143
144 CHAPTER 11 SLOWING DOWN IN THE PRESENCE
145 OF RESONANCES 357
146
147 11.1 Resonance Cross Sections          358
148 11.2 Doppler Effect          365
149 11.3 Slowing Down in the Presence of Resonances     373
150 11.4 Homogeneous-Medium Resonance Absorption     376
151 11.5 Homogeneous Resonance Integrals     385
152 11.6* Heterogeneous System Resonance Absorption 391
153 11.7 Reactor Design Implications of
154 Heterogeneous Lumping     407
155 11.8 The GAM Multigroup Slowing Down Equations 412
156
157
158
159
160 CHAPTER 12 THERMALIZATION 429
161
162 12.1 Neutron Balance Equation          430
163 12.2* Monatomic Gas Moderator Cross Sections     432
164 12.3 Solution to the Monatomic Gas
165 Thermalization Problem     443
166 12.4 General Case Solution     446
167 12.5 Spatial Effects in the Thermalization
168 Problem          451
169
170
171 APPENDIX A. THE SINGULARITY FUNCTIONS 461
172
173 APPENDIX B. THE LAPLACE TRANSFORM 465
174
175 APPENDIX C. MATRIX RELATIONSHIPS 473
176
177 APPENDIX D. SPHERICAL HARMONICS 479
178
179 APPENDIX E. DIFFERENTIATION OF AN
180 INTEGRAL 483
181
182 INDEX 485