Fatigue of materials and structures

application to design and damage

Fatigue of materials and structures
Claude Bathias, A. Pineau, Cla ...
Locate

My Reading Lists:

Create a new list


Buy this book

Last edited by LC Bot
December 29, 2011 | History

Fatigue of materials and structures

application to design and damage

This work doesn't have a description yet. Can you add one?

Publish Date
Publisher
ISTE, Wiley
Language
English
Pages
344

Buy this book

Book Details


Table of Contents

Machine generated contents note: ch. 1 Multiaxial Fatigue / Marc Blétry and Georges Cailletaud
1.1.Introduction
1.1.1.Variables in a plane
1.1.2.Invariants
1.1.3.Classification of the cracking modes
1.2.Experimental aspects
1.2.1.Multiaxial fatigue experiments
1.2.2.Main results
1.2.3.Notations
1.3.Criteria specific to the unlimited endurance domain
1.3.1.Background
1.3.2.Global criteria
1.3.3.Critical plane criteria
1.3.4.Relationship between energetic and mesoscopic criteria
1.4.Low cycle fatigue criteria
1.4.1.Brown-Miller
1.4.2.SWT criteria
1.4.3.Jacquelin criterion
1.4.4.Additive criteria under sliding and stress amplitude
1.4.5.Onera model
1.5.Calculating methods of the lifetime under multiaxial conditions
1.5.1.Lifetime at N cycles for a periodic loading
1.5.2.Damage cumulation
1.5.3.Calculation methods
1.6.Conclusion
1.7.Bibliography
ch. 2 Cumulative Damage / Jean-Louis Chaboche
2.1.Introduction
2.2.Nonlinear fatigue cumulative damage
2.2.1.Main observations
2.2.2.Various types of nonlinear cumulative damage models
2.2.3.Possible definitions of the damage variable
2.3.A nonlinear cumulative fatigue damage model
2.3.1.General form
2.3.2.Special forms of functions F and G
2.3.3.Application under complex loadings
2.4.Damage law of incremental type
2.4.1.Damage accumulation in strain or energy
2.4.2.Lemaitre's formulation
2.4.3.Other incremental models
2.5.Cumulative damage under fatigue-creep conditions
2.5.1.Rabotnov-Kachanov creep damage law
2.5.2.Fatigue damage
2.5.3.Creep-fatigue interaction
2.5.4.Practical application
2.5.5.Fatigue-oxidation-creep interaction
2.6.Conclusion
2.7.Bibliography
ch. 3 Damage Tolerance Design / Raphael Cazes
3.1.Background
3.2.Evolution of the design concept of "fatigue" phenomenon
3.2.1.First approach to fatigue resistance
3.2.2.The "damage tolerance" concept
3.2.3.Consideration of "damage tolerance"
3.3.Impact of damage tolerance on design
3.3.1."Structural" impact
3.3.2."Material" impact
3.4.Calculation of a "stress intensity factor"
3.4.1.Use of the "handbook" (simple cases)
3.4.2.Use of the finite element method: simple and complex cases
3.4.3.A simple method to get new configurations
3.4.4."Superposition" method
3.4.5.Superposition method: applicable examples
3.4.6.Numerical application exercise
3.5.Performing some "damage tolerance" calculations
3.5.1.Complementarity of fatigue and damage tolerance
3.5.2.Safety coefficients to understand curve a = f(N)
3.5.3.Acquisition of the material parameters
3.5.4.Negative parameter: corrosion
"corrosion fatigue"
3.6.Application to the residual strength of thin sheets
3.6.1.Planar panels: Feddersen diagram
3.6.2.Case of stiffened panels
3.7.Propagation of cracks subjected to random loading in the aeronautic industry
3.7.1.Modeling of the interactions of loading cycles
3.7.2.Comparison of predictions with experimental results
3.7.3.Rainflow treatment of random loadings
3.8.Conclusion
3.8.1.Organization of the evolution of "damage tolerance"
3.8.2.Structural maintenance program
3.8.3.Inspection of structures being used
3.9.Damage tolerance within the gigacyclic domain
3.9.1.Observations on crack propagation
3.9.2.Propagation of a fish-eye with regards to damage tolerance
3.9.3.Example of a turbine disk subjected to vibration
3.10.Bibliography
ch. 4 Defect Influence on the Fatigue Behavior of Metallic Materials / Gilles Baudry
4.1.Introduction
4.2.Some facts
4.2.1.Failure observation
4.2.2.Endurance limit level
4.2.3.Influence of the rolling reduction ratio and the effect of rolling direction
4.2.4.Low cycle fatigue: SN curves
4.2.5.Wohler curve: existence of an endurance limit
4.2.6.Summary
4.3.Approaches
4.3.1.First models
4.3.2.Kitagawa diagram
4.3.3.Murakami model
4.4.A few examples
4.4.1.Medium-loaded components: example of as-forged parts: connecting rods
effect of the forging skin
4.4.2.High-loaded components: relative importance of cleanliness and surface state
example of the valve spring
4.4.3.High-loaded components: Bearings-Endurance cleanliness relationship
4.5.Prospects
4.5.1.Estimation of lifetimes and their dispersions
4.5.2.Fiber orientation
4.5.3.Prestressing
4.5.4.Corrosion
4.5.5.Complex loadings: spectra/over-loadings/multiaxial loadings
4.5.6.Gigacycle fatigue
4.6.Conclusion
4.7.Bibliography
ch. 5 Fretting Fatigue: Modeling and Applications / Trevor Lindley
5.1.Introduction
5.2.Experimental methods
5.2.1.Fatigue specimens and contact pads
5.2.2.Fatigue S-N data with and without fretting
5.2.3.Frictional force measurement
5.2.4.Metallography and fractography
5.2.5.Mechanisms in fretting fatigue
5.3.Fretting fatigue analysis
5.3.1.The S-N approach
5.3.2.Fretting modeling
5.3.3.Two-body contact
5.3.4.Fatigue crack initiation
5.3.5.Analysis of cracks: the fracture mechanics approach
5.3.6.Propagation
5.4.Applications under fretting conditions
5.4.1.Metallic material: partial slip regime
5.4.2.Epoxy polymers: development of cracks under a total slip regime
5.5.Palliatives to combat fretting fatigue
5.6.Conclusions
5.7.Bibliography
ch. 6 Contact Fatigue / Ky Dang Van
6.1.Introduction
6.2.Classification of the main types of contact damage
6.2.1.Background
6.2.2.Damage induced by rolling contacts with or without sliding effect
6.2.3.Fretting
6.3.A few results on contact mechanics
6.3.1.Hertz solution
6.3.2.Case of contact with friction under total sliding conditions
6.3.3.Case of contact with partial sliding
6.3.4.Elastic contact between two solids of different elastic modules
6.3.5.3D elastic contact
6.4.Elastic limit
6.5.Elastoplastic contact
6.5.1.Stationary methods
6.5.2.Direct cyclic method
6.6.Application to modeling of a few contact fatigue issues
6.6.1.General methodology
6.6.2.Initiation of fatigue cracks in rails
6.6.3.Propagation of initiated cracks
6.6.4.Application to fretting fatigue
6.7.Conclusion
6.8.Bibliography
ch. 7 Thermal Fatigue / Luc Remy
7.1.Introduction
7.2.Characterization tests
7.2.1.Cyclic mechanical behavior
7.2.2.Damage
7.3.Constitutive and damage models at variable temperatures
7.3.1.Constitutive laws
7.3.2.Damage process modeling based on fatigue conditions
7.3.3.Modeling the damage process in complex cases: towards considering interactions with creep and oxidation phenomena
7.4.Applications
7.4.1.Exhaust manifolds in automotive industry
7.4.2.Cylinder heads made from aluminum alloys in the automotive industry
7.4.3.Brake disks in the rail and automotive industries
7.4.4.Nuclear industry pipes
7.4.5.Simple structures simulating turbine blades
7.5.Conclusion
7.6.Bibliography.

Edition Notes

Includes bibliographical references and index.

Published in
London, Hoboken, NJ

Classifications

Dewey Decimal Class
620.1126
Library of Congress
TA418.38 .F3748 2011

The Physical Object

Pagination
xiii, 344 p. :
Number of pages
344

Edition Identifiers

Open Library
OL25147496M
ISBN 10
1848212917
ISBN 13
9781848212916
LCCN
2010040728
OCLC/WorldCat
699765284

Work Identifiers

Work ID
OL16412639W

Community Reviews (0)

No community reviews have been submitted for this work.

Lists

History

Download catalog record: RDF / JSON
December 29, 2011 Created by LC Bot import new book